Copied to
clipboard

G = (S32):C8order 288 = 25·32

The semidirect product of S32 and C8 acting via C8/C4=C2

non-abelian, soluble, monomial

Aliases: (S32):C8, C4.16S3wrC2, (C3xC12).16D4, C3:Dic3.1D4, C32:1(C22:C8), C6.D6.4C4, C3:S3.2M4(2), C12.29D6:6C2, (C2xS32).2C4, (C4xS32).5C2, C3:S3.2(C2xC8), C3:S3:3C8:6C2, C2.1((S32):C4), (C4xC3:S3).50C22, (C3xC6).1(C22:C4), (C2xC3:S3).5(C2xC4), SmallGroup(288,374)

Series: Derived Chief Lower central Upper central

C1C32C3:S3 — (S32):C8
C1C32C3xC6C2xC3:S3C4xC3:S3C4xS32 — (S32):C8
C32C3:S3 — (S32):C8
C1C4

Generators and relations for (S32):C8
 G = < a,b,c,d,e | a3=b2=c3=d2=e8=1, bab=a-1, ac=ca, ad=da, eae-1=c, bc=cb, bd=db, ebe-1=d, dcd=c-1, ece-1=a, ede-1=b >

Subgroups: 424 in 88 conjugacy classes, 19 normal (17 characteristic)
C1, C2, C2 [x4], C3 [x2], C4, C4 [x2], C22 [x5], S3 [x6], C6 [x4], C8 [x2], C2xC4 [x4], C23, C32, Dic3 [x3], C12 [x3], D6 [x7], C2xC6, C2xC8 [x2], C22xC4, C3xS3 [x2], C3:S3 [x2], C3xC6, C3:C8, C24, C4xS3 [x5], C2xDic3, C2xC12, C22xS3, C22:C8, C3xDic3, C3:Dic3, C3xC12, S32 [x2], S32, S3xC6, C2xC3:S3, S3xC8, S3xC2xC4, C3xC3:C8, C32:2C8, S3xDic3, C6.D6, S3xC12, C4xC3:S3, C2xS32, C12.29D6, C3:S3:3C8, C4xS32, (S32):C8
Quotients: C1, C2 [x3], C4 [x2], C22, C8 [x2], C2xC4, D4 [x2], C22:C4, C2xC8, M4(2), C22:C8, S3wrC2, (S32):C4, (S32):C8

Permutation representations of (S32):C8
On 24 points - transitive group 24T663
Generators in S24
(2 10 22)(4 12 24)(6 14 18)(8 16 20)
(2 6)(4 8)(10 18)(12 20)(14 22)(16 24)
(1 9 21)(3 11 23)(5 13 17)(7 15 19)
(1 5)(3 7)(9 17)(11 19)(13 21)(15 23)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)

G:=sub<Sym(24)| (2,10,22)(4,12,24)(6,14,18)(8,16,20), (2,6)(4,8)(10,18)(12,20)(14,22)(16,24), (1,9,21)(3,11,23)(5,13,17)(7,15,19), (1,5)(3,7)(9,17)(11,19)(13,21)(15,23), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)>;

G:=Group( (2,10,22)(4,12,24)(6,14,18)(8,16,20), (2,6)(4,8)(10,18)(12,20)(14,22)(16,24), (1,9,21)(3,11,23)(5,13,17)(7,15,19), (1,5)(3,7)(9,17)(11,19)(13,21)(15,23), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24) );

G=PermutationGroup([(2,10,22),(4,12,24),(6,14,18),(8,16,20)], [(2,6),(4,8),(10,18),(12,20),(14,22),(16,24)], [(1,9,21),(3,11,23),(5,13,17),(7,15,19)], [(1,5),(3,7),(9,17),(11,19),(13,21),(15,23)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)])

G:=TransitiveGroup(24,663);

On 24 points - transitive group 24T664
Generators in S24
(2 13 22)(4 15 24)(6 9 18)(8 11 20)
(1 5)(2 6)(3 7)(4 8)(9 22)(10 14)(11 24)(12 16)(13 18)(15 20)(17 21)(19 23)
(1 12 21)(3 14 23)(5 16 17)(7 10 19)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 23)(11 15)(12 17)(14 19)(16 21)(18 22)(20 24)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)

G:=sub<Sym(24)| (2,13,22)(4,15,24)(6,9,18)(8,11,20), (1,5)(2,6)(3,7)(4,8)(9,22)(10,14)(11,24)(12,16)(13,18)(15,20)(17,21)(19,23), (1,12,21)(3,14,23)(5,16,17)(7,10,19), (1,5)(2,6)(3,7)(4,8)(9,13)(10,23)(11,15)(12,17)(14,19)(16,21)(18,22)(20,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)>;

G:=Group( (2,13,22)(4,15,24)(6,9,18)(8,11,20), (1,5)(2,6)(3,7)(4,8)(9,22)(10,14)(11,24)(12,16)(13,18)(15,20)(17,21)(19,23), (1,12,21)(3,14,23)(5,16,17)(7,10,19), (1,5)(2,6)(3,7)(4,8)(9,13)(10,23)(11,15)(12,17)(14,19)(16,21)(18,22)(20,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24) );

G=PermutationGroup([(2,13,22),(4,15,24),(6,9,18),(8,11,20)], [(1,5),(2,6),(3,7),(4,8),(9,22),(10,14),(11,24),(12,16),(13,18),(15,20),(17,21),(19,23)], [(1,12,21),(3,14,23),(5,16,17),(7,10,19)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,23),(11,15),(12,17),(14,19),(16,21),(18,22),(20,24)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)])

G:=TransitiveGroup(24,664);

36 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C4D4E4F6A6B6C6D8A8B8C8D8E8F8G8H12A12B12C12D12E12F24A24B24C24D
order1222223344444466668888888812121212121224242424
size116699441166994412126666181818184444121212121212

36 irreducible representations

dim11111112224444
type++++++++
imageC1C2C2C2C4C4C8D4D4M4(2)S3wrC2(S32):C4(S32):C4(S32):C8
kernel(S32):C8C12.29D6C3:S3:3C8C4xS32C6.D6C2xS32S32C3:Dic3C3xC12C3:S3C4C2C2C1
# reps11112281124228

Matrix representation of (S32):C8 in GL4(F5) generated by

4020
0100
2000
0001
,
0020
0400
3000
0004
,
1000
0003
0010
0304
,
4000
0002
0040
0300
,
0001
0020
0400
3000
G:=sub<GL(4,GF(5))| [4,0,2,0,0,1,0,0,2,0,0,0,0,0,0,1],[0,0,3,0,0,4,0,0,2,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,3,0,0,1,0,0,3,0,4],[4,0,0,0,0,0,0,3,0,0,4,0,0,2,0,0],[0,0,0,3,0,0,4,0,0,2,0,0,1,0,0,0] >;

(S32):C8 in GAP, Magma, Sage, TeX

(S_3^2)\rtimes C_8
% in TeX

G:=Group("(S3^2):C8");
// GroupNames label

G:=SmallGroup(288,374);
// by ID

G=gap.SmallGroup(288,374);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,85,64,80,2693,2028,691,797,2372]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^3=d^2=e^8=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,e*a*e^-1=c,b*c=c*b,b*d=d*b,e*b*e^-1=d,d*c*d=c^-1,e*c*e^-1=a,e*d*e^-1=b>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<